LIFTING CHARTS - Crawler Cranes

DEMAG MODEL CC2400-1-440 TON CAPACITY

SW

STERLING CRANE

sw

Remarks

Main boom angle $87^{\circ}-85^{\circ}, 75^{\circ}$ and 65°, capacities for intermediate boom positions are calculated by the crane control system IC- 1

STERLING CRANE

sw

		77.2 ft			96.9 ft			16.5			236.2		
\bigcup_{6}	870 -85°	75°	65°	$87^{\circ}-85^{\circ}$	75°		$87^{\circ}-85$	75°				65°	
$f \mathrm{f}$							0 lb						
59.1	184.3	-	-	-	-	-	.	-	-	-	-	-	
62.3	175.3	-	-	156.5	-	-	-	-		-	-	-	
65.6	166.9	-	-	156.5	-	-	133.2	-	-	-	-	-	
72.2	152.3	-	-	147.0	-	-	133.2	-	-	107.6	-	-	
78.7	140.0	-	-	134.9	-	-	131.0	-	-	107.6	-	-	
85.3	129.2	-	-	124.6	-	-	120.8	-	-	107.4	-	-	
91.9	119.7	-	-	115.5	-	-	112.0	-	-	105.2	-	-	
98.4	111.6	-	-	107.4	-	-	104.3	-	-	100.3	-		
111.5	95.0	-	-	93.9	-	-	91.1	-	-	87.5	-	-	
118.1	88.0	76.9	-	86.6	-	-	85.3	-	-	82.0	-	-	
124.7	81.6	71.2	-	80.5	69.7	-	79.8	-	-	77.2	-	-	
137.8	71.2	61.7	-	69.9	60.2	-	69.2	59.3	-	67.7	-	-	
144.4	66.6	57.8	-	65.5	56.2	-	64.8	55.3	-	63.1	53.6	-	
150.9	62.6	54.0	-	61.3	52.7	-	60.6	51.8	-	59.1	49.8	-	
164.0	55.8	47.8	41.0	54.2	46.3	-	53.6	45.4	-	52.0	43.2	-	
177.2	49.8	42.5	35.9	48.5	40.8	34.0	47.8	39.9	-	46.1	37.7	-	
190.3	-	37.9	31.7	43.7	36.2	29.8	42.8	35.1	28.7	41.0	33.1	-	
203.4	-	34.2	28.2	39.5	32.2	26.2	38.6	31.1	25.1	36.8	28.9	22.7	
216.5	-	-	25.1	-	28.9	23.1	34.8	27.6	21.8	33.1	25.6	19.6	
229.7	-	-	22.7	-	-	20.5	-	24.7	19.2	29.5	22.5	17.0	
242.8	-	-	-	-	-	18.3	-	22.0	17.0	25.6	19.8	14.6	
255.9	-	-		-	-		-	-	14.8		17.6	12.6	
269.0	-	-	-	-	-	-	-	-	-	-	-	10.8	
282.2	-	-	-	-	-	-	-	-	-	-	-	9.3	
295.3	-	-	-	-	-	-	-	-	-	-	-	-	

Remarks: Main boom angle $87^{\circ}-85^{\circ}, 75^{\circ}$ and 65°, capacities for intermediate boom positions are calculated by the crane control system IC-1

STERLING CRANE

sw

Remarks: Main boom angle $87^{\circ}-85^{\circ}, 75^{\circ}$ and 65°, capacities for intermediate boom positions are calculated by the crane control system IC-1

STERLING CRANE

sw

=	352,700 lb + 88,200 lb 7B			ㄷ-1 23'9"			360°								IS 0
(1) 157.5 ft															
	*	78.7 ft		I	98.4 ft			118.1 ft			137.8 ft			157.5 ft	
$\underset{H}{\bigcup}$	\% $87^{\circ}-85^{\circ}$	\square^{75}	65°	$87^{\circ}-85^{\circ}$	75°	165°	$87^{\circ}-85^{\circ}$	\square^{75}	65°	870 -85°	75°	\vdash^{6}	$87^{\circ}-85^{\circ}$	75°	65°
$f t$								1,000 I							
39.4	295.4	-	-	-	-	-	-	.	-	-	-	-	-	-	-
42.7	275.6	-	-	263.5	-	-	-	-	-	-	-	-	-	-	-
45.9	257.9	-	-	246.9	-	-	237.0	-	-	-	-	-	-	-	.
52.5	228.2	-	-	220.0	-	-	211.6	-	-	203.5	-	-	-	-	-
55.8	216.5	-	-	208.3	-	-	200.4	-	-	192.9	-	-	178.4	-	-
59.1	205.5	-	-	197.5	-	-	190.3	-	-	183.2	-	-	176.6	-	-
65.6	186.3	-	-	179.2	-	-	172.6	-	-	166.2	-	-	160.5	-	-
72.2	170.4	-	-	163.8	-	-	157.9	-	-	152.1	-	-	146.8	-	-
78.7	155.6	-	-	150.8	-	-	145.3	-	-	140.0	-	-	135.1	-	-
85.3	140.4	120.4	-	138.7	-	-	134.5	-	-	129.4	-	-	125.0	-	-
91.9	127.6	109.1	-	125.9	-	-	124.8	-	-	120.4	-	-	116.0	-	-
98.4	-	99.6	-	115.1	97.2	-	114.0	-	-	112.2	-	-	108.2	-	-
105.0	-	91.7	-	105.8	89.3	-	104.7	87.7	-	102.7	-	-	101.2	-	-
111.5	-	84.7	-	95.2	82.2	-	96.8	80.9	-	94.8	78.5	-	94.6	-	-
118.1	-	78.5	-	.	76.3	-	89.7	74.7	-	87.7	72.3	-	87.5	71.9	-
124.7	-	73.2	62.6	-	71.0	-	83.6	69.4	-	81.6	67.0	-	81.4	66.6	-
131.2	-	,	58.4	-	66.1	-	75.8	64.6	-	76.3	62.4	-	75.8	61.7	-
137.8	-	-	54.7	-	61.9	51.6	-	60.4	-	71.4	58.2	-	70.8	57.5	-
150.9	-	-	48.3	-	.	45.2	-	53.4	43.0	61.1	50.9	-	62.4	50.3	-
157.5	-	-	.	-	-	42.3	-	50.3	40.3	.	47.8	37.5	58.9	47.2	-
164.0	-	-	-	-	-	39.9	-	-	37.7	-	45.0	34.8	55.8	44.1	-
177.2	-	-	-	-	-	-	-	-	33.5	-	40.1	30.4	-	39.0	29.5
190.3	-	-	-	-	-	-	-	-	,	-	-	26.9	-	34.8	25.8
203.4	-	-	-	-	-	-	-	-	-	-	-	24.0	-	-	22.7
216.5	-	-	-	-	-	-	-	-	-	-	-	.	-	-	20.1

Remarks: Main boom angle $87^{\circ}-85^{\circ}, 75^{\circ}$ and 65°, capacities for intermediate boom positions are calculated by the crane control system IC-1

STERLING CRANE

sw

Remarks: Main boom angle $87^{\circ}-85^{\circ}, 75^{\circ}$ and 65°, capacities for intermediate boom positions are calculated by the crane control system IC-1

STERLING CRANE

sw

Remarks: Main boom angle $87^{\circ}-85^{\circ}, 75^{\circ}$ and 65°, capacities for intermediate boom positions are calculated by the crane control system IC-1

STERLING CRANE

sw

$352,700 \mathrm{lb}+88,200 \mathrm{lb}$ ZB				ㄷ-4 23'9 ${ }^{\prime \prime}$			360°						IS 0		
- 216.5 ft															
	78.7 ft			98.4 ft			118.1 ft			137.8 ft			157.5 ft		
$\underset{\sim}{U}$	$87^{\circ}-85^{\circ}+75^{\circ}+65^{\circ}$			87			870 $-85^{\circ} \cup 75^{\circ}$			$87^{\circ}-85^{\circ} \downarrow 75^{\circ}$		65°	$87^{\circ}-85$		65°
$f \mathrm{f}$,000 Ib							
42.7	231.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-
45.9	226.0	-	-	198.0	-	-	-	-	-	-	-	-	-	-	-
49.2	213.4	-	-	198.0	-	-	173.3	-	-	-	-	.	-	-	-
52.5	202.2	-	-	194.2	-	-	173.3	-	-	-	-	-	-	-	-
55.8	191.8	-	-	184.5	-	-	173.3	-	.	150.4	-	-	-	-	.
59.1	182.5	-		175.5	-	-	168.9	-	-	150.4	-	-	131.6	-	-
65.6	166.4	-	-	160.1	-	-	154.1	-	-	148.2	-	-	131.6	-	-
72.2	152.8	-	-	146.8	-	-	141.3	-	-	136.0	-	-	128.5	-	-
78.7	141.3	-	-	135.6	.	-	130.5	-	-	125.7	-	-	121.0	-	.
85.3	131.4	-		126.1	-	-	121.3	-	-	116.4	-	-	112.2	-	-
91.9	123.0	-	-	117.5	.	.	112.9	-	.	108.5	.	-	104.5	-	.
98.4	109.3	-	-	110.0	-	-	105.6	-	-	101.4	-	-	97.4	-	-
105.0	,	79.4	-	103.0	-	-	99.2	-	.	95.0	-	.	91.3	.	.
111.5	-	73.4	-	95.0	70.5	-	93.5		-	89.5	-	-	85.8	-	-
118.1	-	67.9	-	84.2	65.3	.	87.1	62.6	.	84.4	-	-	80.9	-	.
124.7	-	63.1	-	.	60.4	-	81.1	58.6	-	79.1	-	-	76.3	-	-
131.2	-	58.9	-	-	56.0	-	75.8	54.2	.	73.6	51.4	-	72.3	-	-
137.8	-	54.9	-	-	52.0	-	67.7	50.3	-	69.0	47.4	-	68.6	45.9	-
150.9	-	-	32.4	-	45.4	-	-	43.7	-	60.8	40.8	-	60.4	40.3	-
157.5	-	-	30.2	-	42.5	-	-	40.8	-	54.5	37.9	-	56.9	37.5	-
164.0	-	-	28.2	-	.	25.1	-	38.1	-	.	35.5	-	53.8	34.8	-
177.2	-	-			-	21.6	-	34.0	19.6	-	31.1	-	45.4	30.4	-
190.3	-	-	.	-	-	19.0	-	.	16.8	-	27.3	13.9	.	26.5	-
203.4	-	-		-	-		-	-	14.6	-	,	11.5	-	23.4	10.6
216.5	-	-	-	-	1.6	-	-	9.5	-	20.7	8.6
229.7	-	-			-	-	-	-		-	-	8.2	-		6.8
242.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Remarks: Main boom angle $87^{\circ}-85^{\circ}, 75^{\circ}$ and 65°, capacities for intermediate boom positions are calculated by the crane control system IC-1

STERLING CRANE

sw

	$352,700 \mathrm{lb}+88,200 \mathrm{lb}$ ZB			든 23'9"			360°								IS 0
$236.2 \mathrm{ft}$															
	\%	78.7 ft			98.4 ft			118.1 ft			137.8			157.5 ft	
\leftrightarrow	- $87{ }^{\circ}-85^{\circ}$		65°	870 -85°	75°	65°	$8^{87}-85^{\circ}$	75°	65°	$87^{\circ}-85^{\circ}$	75°	65°	870 -85°	75°	65°
ft								1,000 lb							
42.7	198.0	-	-	-	-	-	-	1,000	-	-	-	-	-	-	-
45.9	198.0	-	-	173.3	-	-		-	-	-	-	-	-	-	-
52.5	193.6	-	-	173.3	-	-	149.5	-	-	.	-	-	-	.	.
55.8	183.9	-	-	170.4	-	-	149.5	-	-	131.6	-	-	-	-	-
59.1	175.3	-	-	167.8	-	-	149.5	-	.	131.6	.	.	114.2	-	.
65.6	159.8	-	-	153.7	-	-	145.3	-	-	129.9	-	-	114.2	-	-
72.2	147.0	-	-	141.3	-	-	135.8	-	-	126.5	-	-	112.9	-	-
78.7	136.0	-	-	130.5	-	-	125.7	-	-	120.8	-	-	110.2	-	-
85.3	126.5	-	-	121.5	-	-	116.6	-	-	112.0	-	-	107.4	-	-
91.9	118.6	-	-	113.3	-	-	108.7	-	-	104.5	-	-	100.5	-	-
98.4	104.9	-	-	106.3	-	-	101.9	-	-	97.7	-	-	93.9	-	-
111.5	-	68.1	-	93.9	.	-	90.2	-	-	86.2	-	-	82.7	-	-
118.1	-	63.5	-	82.7	60.2	-	85.1	-	-	81.4	-	-	77.8	-	-
124.7	-	58.9	-	-	55.8	-	80.2	53.1	-	76.9	-	-	73.6	-	-
131.2	-	54.5	-	-	51.6	-	74.7	49.8	-	72.8	46.5	-	69.7	-	-
137.8	-	50.7	-	-	47.8	-	66.1	46.1	-	68.1	43.2	-	65.9	-	-
144.4	-	47.4	-	-	44.5	-	6.1	42.8	-	63.7	39.9	-	62.6	38.4	-
150.9	-		-	-	41.4	-	-	39.9	-	60.0	37.0	-	59.7	36.2	-
157.5	-	-	24.5	-	38.8	-	-	37.0	-	53.1	34.2	-	56.2	33.7	-
164.0	-	-	22.7	-	36.6	-	-	34.6	-	-	31.7	-	52.9	31.3	
177.2	-	-	19.6	-	\%	16.5	-	30.4	-	.	27.6	-	44.3	27.1	-
190.3	-	-	-	-	-	13.9	-	.	11.9	-	24.0	8.8	-	23.4	-
203.4	-	-	.	-	-	12.1	-	.	9.9	-	-	6.8	-	20.5	-
210.0	-	-	-	-	-	-	-	-	9.0	-	-	6.0	-	19.2	-
216.5	-	-	-	-	-	-	-	-	8.4	-	-	-	-	17.9	-

Remarks

Main boom angle $87^{\circ}-85^{\circ}, 75^{\circ}$ and 65°, capacities for intermediate boom positions are calculated by the crane control system IC- 1

